The Crystal Structure of $\mathbf{S m}_{10} \mathbf{P d}_{\mathbf{2 1}}$

By Maria L. Fornasini, Angelo Mugnoli and Andrea Palenzona
Istituto di Chimica Fisica, Università di Genova, Corso Europa, Palazzo delle Scienze, 16132 Genova, Italy

(Received 27 January 1979; accepted 26 April 1979)

Abstract

$\mathrm{Sm}_{10} \mathrm{Pd}_{21}$ crystallizes in the monoclinic space group $C 2 / m$ with $a=24.853$ (4), $b=5.765$ (1), $c=$ 16.509 (3) $\AA, \beta=90.88$ (2) ${ }^{\circ}, Z=4, D_{x}=10.50, D_{m}$ $=10.35 \mathrm{Mg} \mathrm{m}^{-3}$ (by pycnometry), $\mu($ Mo $K \alpha)=39.8$ mm^{-1}. The structure was solved by direct methods and refined by full-matrix isotropic least squares to a conventional R index of 0.077 over 2378 countermeasured observed reflexions. The determination of the atomic positions allowed the correct stoichiometry to be assigned. The structure consists of nets of hexagons, pentagons and triangles interleaved by 3^{6} nets of Pd atoms, all the layers being stacked normal to the y axis. The $\mathrm{Sm}-\mathrm{Pd}$ contacts, always shorter than the sum of the corresponding metallic radii, play an important role in determining the coordination of each atom.

Introduction

Rare earths (R) with the Group VIII elements Fe , Co , $\mathrm{Ni}, \mathrm{Ru}, \mathrm{Rh}, \mathrm{Os}, \mathrm{Ir}$ and Pt are known to form compounds with $1: 2$ stoichiometry and crystal structures corresponding to the Laves phases, MgCu_{2} or MgZn_{2} type. With Pd, on the other hand, only Eu is known to form a compound, EuPd_{2}, with MgCu_{2} structure type, containing Eu in the divalent state (Iandelli \& Palenzona, 1974). In all other known R-Pd phase diagrams, $\mathrm{Y}-\mathrm{Pd}, \mathrm{Sm}-\mathrm{Pd}$, $\mathrm{Gd}-\mathrm{Pd}$, $\mathrm{Dy}-\mathrm{Pd}$, HoPd and Er-Pd investigated by Loebich \& Raub (1973), phases are formed with 1:2 composition but their structures have not yet been determined. Moreover, in the $\mathrm{Yb}-\mathrm{Pd}$ system around the $1: 2$ composition at least three phases are formed which give complex X-ray powder patterns (landelli \& Palenzona, 1973).

Therefore it seemed worthwhile to undertake research on the $R \mathrm{Pd}_{2}$ phases; in this paper the crystal structure of $\mathrm{Sm}_{10} \mathrm{Pd}_{21}$ is reported.

Experimental

A careful examination of the above-mentioned $R-\mathrm{Pd}$ phase diagrams showed that SmPd_{2} presents the most favourable thermal conditions of preparation in order

0567-7408/79/091950-04\$01.00
to obtain a single phase and, possibly, single crystals; therefore, a sample of composition $\mathrm{Sm}_{36} \mathrm{Pd}_{64}$ was prepared (Sm 99.5\% and Pd 99.999% purity), sealed in a tantalum crucible under argon by arc welding, melted in an induction heating furnace and slowly cooled to room temperature. The homogeneity of the sample was checked by conventional micrographic techniques. Large crystals separated by a eutectic formed the principal phase. Small cavities in the bulk allowed the separation of single crystals.

A needle-like single crystal with dimensions $0.05 \times$ $0.07 \times 0.40 \mathrm{~mm}$ (elongated parallel to the y axis, as observed later) was examined by X-ray photographic techniques. Monoclinic symmetry and extinctions for $h k l$ with $h+k=2 n+1$ indicated the possible space groups $C 2, C m$ or $C 2 / m$. $C 2 / m$ was chosen for structure resolution on the basis of intensity statistics.

Lattice constants (see Abstract) and intensities were measured with graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$) on a Philips PW 1100 automatic diffractometer. The ω-scan mode was used with scan width 2°, scan speed $0.045^{\circ} \mathrm{s}^{-1}$, and background time 10 s . A whole hemisphere of the reciprocal lattice was scanned for θ between 2 and $27 \cdot 5^{\circ}$. Three standard reflexions were periodically monitored; no significant change in their intensities was observed. Lorentz and polarization corrections were applied; the absorption correction was made, following the procedure suggested by North, Phillips \& Mathews (1968), by the use of 72ψ-scan data from four strong $0 k 0$ reflexions. The discrepancy index among equivalent reflexions amounted to $2 \cdot 3 \%$; averaging gave 3008 independent reflexions.

The structure determination was accomplished using direct methods. The unusual intensity distribution, with very weak reflexions for k odd, led to difficulty in the solution of the phase problem. The structure was finally solved using MULTAN 78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978), kindly supplied by Dr P. Main. MULTAN was applied to 350 reflexions with $|E| \geq 1.56$ and to the corresponding 5000 strongest phase relationships. Owing to the particular intensity distribution, 100 weak reflexions and the corresponding 2523 phase relationships were retained for the PSI ZERO test and the respective figure of merit (FOM) was allotted a weight of $1 \cdot 2$. (c) 1979 International Union of Crystallography

This gave the best combined FOM for the correct solution, in spite of the presence of better values for the absolute FOM and for the residual among the 16 sets of starting phases considered.

Least-squares full-matrix refinement with isotropic temperature factors was accomplished over the 2378 reflexions having $\left|F_{o}\right| \geq 6 \sigma\left(F_{o}\right)$, with weights $w=$ $\left[\sigma^{2}\left(F_{o}\right)+0.062 F_{o}^{2}\right]^{-1}$. The SHELX 76 system of programs was used (Sheldrick, 1976). Scattering factors and dispersion corrections were taken from International Tables for X-ray Crystallography (1974). At convergence for the 82 parameters, the conventional R index was 0.077 . The final values of the

Table 1. Positional and thermal parameters $\left(\times 10^{4}\right)$ for $\mathrm{Sm}_{10} \mathrm{Pd}_{21}$ with e.s.d.'s in parentheses

	x	y	z	$U\left(\AA^{2}\right)$
	x	y	$z(1)$	$4813(1)$
$\operatorname{Sm}(1)$	$3515(1)$	0	$45(4)$	
$\operatorname{Sm}(2)$	$8554(1)$	0	$6445(1)$	$72(4)$
$\operatorname{Sm}(3)$	$3147(1)$	0	$1978(1)$	$67(4)$
$\operatorname{Sm}(4)$	$741(1)$	0	$8135(1)$	$70(4)$
$\operatorname{Sm}(5)$	$1186(1)$	0	$1307(1)$	$59(4)$
$\operatorname{Sm}(6)$	$2753(1)$	0	$9211(1)$	$68(4)$
$\operatorname{Sm}(7)$	$4288(1)$	0	$190(1)$	$55(4)$
$\operatorname{Sm}(8)$	$420(1)$	0	$5941(1)$	$53(4)$
$\operatorname{Sm}(9)$	$5339(1)$	0	$2797(1)$	$70(4)$
$\operatorname{Sm}(10)$	$7627(1)$	0	$3516(1)$	$56(4)$
$\operatorname{Pd}(1)$	$3487(1)$	5000	$4752(2)$	$77(6)$
$\operatorname{Pd}(2)$	$8590(1)$	5000	$6643(2)$	$68(6)$
$\operatorname{Pd}(3)$	$3131(1)$	5000	$1963(2)$	$124(6)$
$\operatorname{Pd}(4)$	$675(1)$	5000	$7900(2)$	$82(6)$
$\operatorname{Pd}(5)$	$1164(1)$	5000	$1597(2)$	$69(6)$
$\operatorname{Pd}(6)$	$2690(1)$	5000	$9207(2)$	$93(6)$
$\operatorname{Pd}(7)$	$4404(1)$	5000	$172(2)$	$88(6)$
$\operatorname{Pd}(8)$	$437(1)$	5000	$5920(2)$	$78(6)$
$\operatorname{Pd}(9)$	$5377(1)$	5000	$2723(2)$	$91(6)$
$\operatorname{Pd}(10)$	$7614(1)$	5000	$3551(2)$	$96(6)$
$\operatorname{Pd}(11)$	2500	2500	5000	$68(6)$
$\operatorname{Pd}(12)$	$7033(1)$	$2542(3)$	$2263(1)$	$56(4)$
$\operatorname{Pd}(13)$	$3727(1)$	$2496(3)$	$3237(1)$	$57(4)$
$\operatorname{Pd}(14)$	$1654(1)$	$2350(4)$	$9538(1)$	$74(5)$
$\operatorname{Pd}(15)$	$567(1)$	$2555(3)$	$4397(1)$	$71(4)$
$\operatorname{Pd}(16)$	$5158(1)$	$2452(3)$	$1168(1)$	$65(4)$

Fig. 1. A view of the structure $(a, b / 2, c)$ of $\mathrm{Sm}_{10} \mathrm{Pd}_{21}$.
positional and thermal parameters are listed in Table 1.*

Discussion

As shown in Fig. 1, the structure of $\mathrm{Sm}_{10} \mathrm{Pd}_{21}$ is made up of layers parallel to the (010) plane. At $y=0$ and y $=\frac{1}{2}, \mathrm{Sm}$ and Pd atoms in 1:1 ratio form somewhat distorted hexagon-pentagon-triangle nets placed in such a way that the atoms of one layer cover nearly exactly those of the other, each atom being overlapped by an atom of a different kind. The voids left in this structural network at the centres of the hexagonal and pentagonal prisms ($y \simeq \frac{1}{4}$ and $y \simeq \frac{3}{4}$) are occupied by Pd atoms which form two identical slightly irregular 3^{6} nets.

Table 2 collects the interatomic distances up to values 21% greater than $\sum r$, i.e. the sum of the corresponding atomic radii (1.80 and $1.38 \AA$ for Sm and Pd respectively). A more complete representation of the distribution of the neighbouring atoms is given in Figs. 2 and 3 , where the number of surrounding atoms at a distance d is plotted against the ratio $d / \sum r$ for each atomic position, following a method outlined by Bruzzone, Fornasini \& Merlo (1970).

A noticeable feature common to both graphs is that the $\mathrm{Sm}-\mathrm{Pd}$ distances are always less than $\sum r$, whilst the $\mathrm{Sm}-\mathrm{Sm}$ and $\mathrm{Pd}-\mathrm{Pd}$ distances (with only two

Fig. 2. Distribution of neighbouring atoms around the Sm atoms.

Table 2. Interatomic distances (\AA) in $\mathrm{Sm}_{10} \mathrm{Pd}_{21}$
E.s.d.'s are less than $0.01 \AA$.

Fig. 3. Distribution of neighbouring atoms around the Pd atoms.
exceptions) are greater than $\sum r$. This causes the first gap in the distribution between the nearest group of the $\mathrm{Sm}-\mathrm{Pd}$ contacts and the others. So, evaluating the coordination is questionable, since one can either count

$\mathrm{Pd}(1)$	- $1 \mathrm{Sm}(2)$	2.80	Pd(6)	- 1	Sm(3)	2.83	Pd(11)	- 2	$\mathrm{Sm}(10)$	2.86	Pd(14)		Sm(7)	2.84
	- $2 \mathrm{Sm}(1)$	2.89			Sa(6)	2.85		- 2	Sa(1)	2.93			Sm(6)	2.95
	- $1 \operatorname{Sm}(10)$	2.93		2	Sa(6)	2.89		-2	Sm(2)	3.80			Sa(3)	2.98
	- $1 \mathrm{Sax}(8)$	2.96		- 1	Sam(5)	2.93		- 2	Pd(10)	2.81			Sa(6)	3.10
	- $2 \mathrm{Pd}(11)$	2.88		-2	$\mathrm{Pd}(12)$	2.90		-2	Pd(1)	2.88			Smin (5)	3.44
	- $2 \mathrm{Pd}(13)$	2.96		-2	$\mathrm{Pd}(14)$	2.95		-2	Pd(11)	2.88			Sin(4)	3.49
	-2 Pd(15)	3.09		-2	Pd(14)	3.05						-1	Pd(14)	2.71
													$\mathrm{Pd}(3)$	2.88
$\mathrm{Pd}(2)$	- $1 \mathrm{Sm}(9)$	2.80	Pd(7)	- 1	Sm(4)	2.82	$\mathrm{Pd}(12)$	1	5 sm (6)	2.90		-1	$\mathrm{Pd}(6)$	2.95
	- $2 \mathrm{Sos}(2)$	2.90		- 1	Sm(5)	2.83		1	$\mathrm{Sm}(10)$	2.92			$\mathrm{Pd}(7)$	3.00
	- $1 \operatorname{Sas}(1)$	3.02		- 2	Sam (7)	2.90		- 1	Sm(2)	2.96		-1	$\mathrm{Pd}(6)$	3.05
	- $1 \mathrm{Sm}(10)$	3.03		-2	$\mathrm{Pd}(16)$	2.88		-1	Sm(5	2.97		-1	Pd(14)	3.06
	- $2 \mathrm{Pd}(12)$	2.81		-2	$\mathrm{Pd}(16)$	2.88		-1	Sm(3)	3.15				
	- I Pd(s)	2.96		- 2	$\mathrm{Pd}(14)$	3.00		- 1	$1 \mathrm{Pd}(2)$	2.81	Pd(15)		Sam ${ }^{\text {c }}$ 8)	2.91
	- 2 Pd(15)	3.07		- 1	$\mathrm{Pd}(7)$	3.03		1	$1 \mathrm{Pd}(\mathrm{s})$	2.82			Sm(1)	2.97
								- 1	$\mathrm{pd}(12)$	2.83			9m(8)	2.97
Pa(3)	$1 \mathrm{Sm}(4)$	2.81	$\mathrm{Pa}(8)$	2	sals)	2.88			Pd(6)	2.90			Sa(2)	2.99
	- $1 \operatorname{Sm}(10)$	2.87		1	$\sin (1)$	2.89		1	$1 \mathrm{Pd}(10)$	2.92			Sm(9)	3.04
	- $2 \mathrm{Sm}(3)$	2.88		1	$\sin (9)$	2.89		1	Pd(12)	2.93		-1	Pd(15)	2.82
	- 1 Sm (6)	2.91		2	$\mathrm{Pd}(13)$	2.87		-1	$1 \mathrm{Pd}(3)$	3.14		-1	$\mathrm{Pa}(8)$	2.90
	- $2 \mathrm{~Pa}(14)$	2.88		-2	$\mathrm{Pd}(15)$	2.90						-1	Pt(8)	2.91
	- $2 \mathrm{Pd}(13)$	2.93		2	$\mathrm{Pd}(15)$	2.91	Pd(13)	- 1	$1 \operatorname{sm}$ (3)	2.89		-1	$\mathrm{Pd}(25)$	2.95
	- $2 \mathrm{Pd}(12)$	3.14		-1	Pd(4)	3.31			$1 \operatorname{sen}(8)$	2.89			$\mathrm{Pd}(2)$	3.07
									$1 \mathrm{Sa}(4)$	$3 . \mathrm{cl}$			$\mathrm{Pd}(1)$	3.09
Pd(4)	${ }_{1} \mathrm{Sa}(9)$	2.75	Po(9)	2	Sal 9)	2.89		-1	Sas (1)	3.03			Pd(9)	3.16
	$-2 \operatorname{sm}(4)$	2.91		1	Sm(2)	2.97		1	Sa(10)	3.13				
	$-15 \mathrm{Sa}(3)$	2.93		1	Sma)	2.99		1	$1 \mathrm{Pd}(4)$	2.81	Pd(16)		San(4)	2.92
	- $1 \mathrm{Sam}(7)$	3.15		1	Sal(4)	3.10		- 1	$1 \mathrm{~Pa}(8)$	2.87			S(5 (2.95
	- $2 \mathrm{Pd}(13)$	2.81		1	Sal(5)	3.11		-1	$1 \mathrm{Pd}(13)$	2.88			Sal (7)	3.00
	$\cdots \mathrm{P}$ P(16)	2.96		- 2	$\mathrm{Pd}(16)$	3.00		1	$1 \mathrm{Pd}(13)$	2.89			Sm(7)	3.03
	-1 $\mathrm{Pd}(8)$	3.31		- 2	Rd(15)	3.16		-1	$1 \mathrm{Pd}(3)$	2.93			Sa(9)	3.07 2.83
								-1	$1 \mathrm{Pd}(1)$	2.96			$\mathrm{Pd}(16)$ $\mathrm{Pd}(7)$	2.83 2.88
Po(i)	$\begin{aligned} & -1 \operatorname{Son}(9) \\ & -\quad 2 \operatorname{Sin}(5) \end{aligned}$	2.87 2.92		- 2	Smm(10)	2.88 2.90		- 1	$1 \mathrm{Pd}(10)$	3.17			Pd(7)	2.88 2.88
	- $1 \operatorname{Sm}(6)$	3.02		- 1	Sam (3)	2.93							$\mathrm{Pd}(16)$	2.94
	- $1 \operatorname{Sm}(7)$	3.14		- 1	Sa(1)	3.04							P(15)	2.95
	- 2 Pd(12)	2.82		- 2	$\mathrm{Pd}(11)$	2.81							$\mathrm{Pd}(4)$	2.96
	- $2 \mathrm{Pd}(16)$	2.95		- 2	$\mathrm{Pd}(12)$	2.92							$\mathrm{Pd}(9)$	3.00
	- 1 Pd(2)	2.96			$\mathrm{Pd}(1)$									

only the closest atoms up to $d / \sum r=1 \cdot 0$, excluding longer distances between atoms of the same type, or count all the atoms up to $d / \sum r=1 \cdot 21$, as listed in Table 2, reaching the second gap in the distance distribution. In the last case the Sm and Pd mean coordination numbers, 17.7 and 11.3 respectively, are quite acceptable for a rare-earth intermetallic compound with $1: 2$ stoichiometry, as compared, for example, with the corresponding values of 16 and 12 for the Laves phases. On the other hand, from a chemical point of view, the pronounced gap between $\mathrm{Sm}-\mathrm{Pd}$ contacts and distances to atoms of the same kind suggests that they cannot be reasonably mixed to build up coordination polyhedra. We prefer to take into account only the nearest neighbours and this criterion will be adopted in the following description.

Regarding the Sm coordination, $\mathrm{Sm}(1), \mathrm{Sm}(3)$, $\operatorname{Sm}(6)$ and $\operatorname{Sm}(10)$, surrounded by 11 Pd atoms, lie at the centre of a pentagon with two triangles above and below the plane of the pentagon (Fig. 4); Sm (7) has the same coordination, except that a Pd atom is replaced by $\mathrm{Sm}(7)$, which gives the only $\mathrm{Sm}-\mathrm{Sm}$ short contact. $\mathrm{Sm}(9)$ has 10 Pd atoms in a characteristic coordination polyhedron similar to that found around the Co atom in the structure of CoSn (Pearson, 1972); $\operatorname{Sm}(2), \mathrm{Sm}(4)$ and $\operatorname{Sm}(5)$ have nearly the same environment, but with a Pd missing, while for $\mathrm{Sm}(8)$ the 10 Pd atoms are slightly rearranged. The two principal kinds of coordination around the Sm atoms can be well represented by the polyhedra of $\operatorname{Sm}(9)$ and $\operatorname{Sm}(10)$, drawn in Fig. 4 by means of the program ORTEP (Johnson, 1965).

Fig. 4. Coordination polyhedra of $\operatorname{Sm}(9)$ and $\operatorname{Sm}(10)$. Assumed sphere radii are proportional to atomic radii.

In spite of the complexity of the structure which presents 16 site sets for the Pd atoms, they are four, five or six coordinated with Sm atoms in only a few ways. Around $\mathrm{Pd}(7), \mathrm{Pd}(8)$ and $\mathrm{Pd}(11)$, the Sm atoms form a slightly puckered square; $\operatorname{Pd}(1), \operatorname{Pd}(2), \operatorname{Pd}(3), \operatorname{Pd}(4)$, $\operatorname{Pd}(5), \operatorname{Pd}(6)$ and $\operatorname{Pd}(10)$ are at the centre of a more or less irregular trigonal bipyramid; the environment of $\operatorname{Pd}(12), \operatorname{Pd}(13), \operatorname{Pd}(15)$ and $\operatorname{Pd}(16)$ appears to approximately tetragonal pyramidal but with the axial $\mathrm{Sm}-\mathrm{Pd}$ bond generally longer than the equatorial ones; $\operatorname{Pd}(9)$ is octahedrally surrounded; finally, $\operatorname{Pd}(14)$ is a hybrid, as it is coordinated with four Sm and one $\mathrm{Pd}(14)$, the latter giving the only Pd-Pd distance which shows a slight contraction ($2.71 \AA$).

Finally, we compare the present structure with that of the previously mentioned cubic Laves phase, which is adopted by Eu and by the alkaline earths Ca, Sr and Ba (Pearson, 1967) in the corresponding $M \mathrm{Pd}_{2}$ compounds. Although these two structural types do have something in common (e.g. both are layered), they are quite different. In $\mathrm{Sm}_{10} \mathrm{Pd}_{21}$ short contacts occur only between atoms of a different kind. Moreover, whereas in the Laves phase Pd is surrounded by an icosahedron, i.e. a bicapped pentagonal antiprism, in $\mathrm{Sm}_{10} \mathrm{Pd}_{21}$, even if all the atoms up to the second gap are considered, the environments around $\operatorname{Pd}(12)$,
$\operatorname{Pd}(13), \operatorname{Pd}(15)$ and $\operatorname{Pd}(16)$ can be described as bicapped pentagonal prisms, and the situation differs further for the remaining Pd atoms.

We wish to thank Professor A. Iandelli for his interest in this work, the Centro di Cristallografia Strutturale del CNR (University of Pavia) for the use of the PW 1100 diffractometer, and the Consiglio Nazionale delle Ricerche for financial support.

References

Bruzzone, G., Fornasini, M. L. \& Merlo, F. (1970). J. Less-Common Met. 22, 253-264.
Iandelli, A. \& Palenzona, A. (1973). Rev. Chim. Minér. 10, 303-308.
Iandelli, A. \& Palenzona, A. (1974). J. Less-Common Met. 38, 1-7.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Loebich, O. Jr \& Raub, E. (1973). J. Less-Common Met. 30, 47-62.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J. P. \& Woolfson, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Pearson, W. B. (1967). A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2. Oxford: Pergamon Press.
Pearson, W. B. (1972). The Crystal Chemistry and Physics of Metals and Alloys, p. 536. New York: Wiley-Interscience.
Sheldrick, G. M. (1976). SHELX 76. A program for crystal structure determination. Univ. of Cambridge, England.

Synthesis and Crystal Structure of Diamagnetic ReP $_{4}$, a Polyphosphide with Re-Re Pairs

By Wolfgang Jeitschio and Reinhold Rühl
Institut für Anorganische und Analytische Chemie, Universität Giessen, D-6300 Giessen, Federal Republic of Germany

(Received 27 October 1978; accepted 9 May 1979)

Abstract

Microcrystalline ReP_{4} was prepared by heating the elemental components in the presence of iodine. Single crystals were obtained by reaction of the components

0567-7408/79/091953-06\$01.00
in molten tin. They are orthorhombic, Pbca, $a=$ 6.227 (2), $b=9.231$ (2), $c=10.854$ (3) $\AA, Z=8$. The structure is of a new type. It was determined and refined from single-crystal diffractometer data to $R=$ 0.042 for 1195 structure factors. The Re atoms have

